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The factors with an appreciable  influence on the accuracY of determinat ion of the basic ga lvanomagnet ic  
and thermomagnet ic  effects in semiconductors are examined.  Formulas are given for the Hall  emf, mag-  

neto resistance, and transverse Nernst-Ettingshausen effect  with a l lowance for the nonisothermici ty of the 
specimens and heat  transfer from their surface to the surrounding medium.  

The main diff icul ty in investigating galvano-  and thermomagnet ic  effects arises from the need to exclude differ- 
ent kinds of parasi t ic  emf's,  including secondary ga lvano-  and thermomagnet ic  effects superimposed on the basic meas -  
ured quantity [1-4]. 

It is of considerable interest to examine  and to evaluate  quant i ta t ively  the influence of various factors on the 
accuracy of measurement  of galvano-  and thermomagnet ic  phenomena (Ha l l  effect,  magneto resistance, and transverse 
Nernst-Ettingshausen effect) under the actual  exper imenta l  conditions. We begin with an analysis of the Hall  effect.  

Let the specimen be a para l le lepiped  located in a magnet ic  f ield;  the current and the field are oriented as shown 
in the figure. The emf is measured by probes located on opposite faces of the specimen at right angles to the edge b. 

k / Z  

Orientation of e lec t r ic  current and 

magnet ic  field and locat ion of 
measuring probes in test specimen.  

Here and below we consider, for s implic i ty ,  only isotropic semiconductors 
with a s imple band structure and carriers of one sign, spec i f ica l ly  electrons 
with charge e, and assume the field to be weak (un/c << 1). 

1. The temperature is the same at al l  point of the specimen.  Then the 
isothermal Hall  emf is given by the expression [2, 5]: 

( G )  i = ( G )  i IH/d ,  
where (1) 

(R.)  i = A/eric. 

The eoeff ic ient  A is determined by the diffusion mechanism and the degree of 
degeneracy of the electron gas. 

2. The temperature  at the ends of the specimen T a = T b = const. 
a) There is no heat  transfer from the la te ra i  surfaces of the specimen (adiabat ic  

conditions). Here the Ettingshausen effect  - temperature  gradient perpendicu-  
lar to magnet ic  field and current - is also present at the same t ime as the Hall  
effect .  If the coeff ic ient  of thermal  emf, c~, of the test mater ia l  is not zero, 

this temperature  drop produces an Ettingshausen emf  E e superimposed on the Hall  emf  and given by 

Ee = ab( dT 
)e = e ~ d 

where 

2r  + 3/2 
B (r, I~*) = 

2r  q- 1/2 

For a nondegenerate semiconductor [2] B (r, ~*) = 
Thus the total  emf between the Hall  probes is 

(2) 

r +_22  r+1 (<) 
F~r_l/2(~*) r @ 1 Fr (a*) 

r - - l~2 ,  and for the degenerate  case B (r, ~,"::) = (2r - -  1)/(2r -5 2). 

Ecf = (Ex) i  1 -~-B(r,~ '~) ..... k Io . (3) 
ect 

b) Heat trans%r from the la te ra l  surfaces of the specimen is not zero. 

In order to es t imate  the influence of heat  transfer on the temperature drop AT e due to the Ettingshausen effect,  
we shatll examine the thermal  conditions in the specimen shown in the figure. We assume that there is no temperature  
gradient in the x and z directions.  This condit ion is satisfied well enough at small  Biot numbers ab/E < 1 when the 

specimen length I > 2b. For steady conditions the heat  conduction equation and the boundary conditions, taking into 
account Ettingshausen heat  and heat  transfer to the surrounding medium, have the form 
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d 2 T '  2a ]2 
- - ~ .  T '  @ - 0 ,  (4 )  

dx ~ ~. d crY. 

We -I- L dT' (0) .aT' (0) - -  O, (5) 
dy 

We + )~ dT' (b) aT' (b) -- O, 
dy 

(6) 

k 
w e =B(r ,  I~*) oTRxjH.  (7) 

g 

Solving (4) with conditions (5) and (6), we obtain the temperature drop in the y direction: 

A T =  wb ( 1 _ ~ ) ,  (8) 

~-- L d ( b + d )  1 3 b +- -4  " 

The quantity g is a correction allowing for heat transfer from the surface of the specimen. In this case the Hall 
emf measured between the probes may be written 

Ec t=(Ex ) i [  l + B ( r ' ? * )  k J~  ] (9) 

Here the Joffe number Jo is based on the mean specimen temperature T m. 

Thus, it follows from (9) that the heat transfer from the specimen surface reduces the Ettingshausen effect and 
correspondingly the nonisothermal part of the Hall emf. To determine the order of magnitude of the correction ; ,  we 
shall comider, for example, what its value must be for a specimen with a ratio of thickness to width d/b = 0.5 and 
thermal conductivity X = 1.3 W/m-deg at room temperature. Then ~ = 0.06 in a vacuum (a = 4.2 W/m z'deg) and ; = 
= 0.33 in a chamber of still air (a = 21 W/m~.deg). It is clear from this example that heat transfer leads to a reduced 
Ettingshausen effect and should be taken into account in measuring the latter. At the same time, it does not reduce the 
effect so much (at small Bi) that it may be neglected in measuring the Hail emf. 

3. There is a longitudinal temperature gradient (dT/dx ~ 0) due to absorption and emission of Peltier heat at the 
ends of the specimen when a constant current I passes through it. 

In a magnetic field this temperature drop in the specimen produces a transverse Nernst-Ettingshausen emf  which is 
added to the Hall emf. The former is given by [5] 

b dT 
EN_ E = B(r, [~*) "~ r Hb (10) 

e dx 

To determine the value of the temperature gradient dT/dx, we shall use results from [6], which gives an expression for 
the temperature distribution along the length of the specimen due to the Peltier effect, with allowance for heat transfer 
from the ends and sides of the specimen and heat losses from the lateral and thermocouple leads. For the central part of 
the specimen, where the Hall probes are located it is easy to show that 

dT(I/2) _ a ]Tm (11) 

ax ~ (1 + ~,') ' 
where 

n 

y, = ab 1 a b ~ (b @ d) -Jr-' b ~ (12) 

Substituting (11) into (10), we find that the Nernst-Ettingshausen emf is 

k Jo 
E N-E = B(r,~*). - -  (Ex) i. (13) 

e~ (1 + ~ ' )  

Thus, taking (9) and (13) into account, the final formula for the Hall emf under actual experimental conditions is 

Ec t=(Ex ) i [  l + B ( r ' ~ * ) k e e  J~ ( 1 - ~  + 1 q-1 ) ] y ~  (14) I 
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It follows from (14) that the influence Of the gttingshausen and Nernst-Ettingshausen parasitic effects on the accu-  
racy of determination of the Hall emf will be the greater, the larger the Joffe numbers of the test material ,  and at suf- 
ficiently large Jo they may distort the results considerably. For example,  in the case of an a tomic semiconductor with 
scattering at acoustic lat t ice vibrations (r = 0) and a = 170-180 #V/deg and Jo = 0.6, the error in determining the Hall 
emf  is 20-25%, allowing for heat transfer. 

Let us now consider the influence on the accuracy of determination of the relative change in resistance (AO/O) in a 
magnetic  field of the longitudinal Nemst-gttingshausen effect created by the temperature drop due to the Peltier effect.  
In the absence of a magnetic field, when the current is switched on, a potential  difference gp0 is set up between the 

O 0 measuring probes f and g, equal to the sum of the ohmic v ltage drop gp and the thermal emf gte due to the Peltier 
f, l effect.  When the magnetic  field is turned on, additional e m s  nap and EN_ g appear between the measuring probes; 

these are due respectively to change in specimen resistance and to the longitudinal Nernst-gttingshausen effect: 
_ 0 +EAp+EN/_E. gp - gp +Ete 

It is easy to see that the magnetoresistance equation, with account for the Peltier and Nernst-Ettingshausen effects, 
has the form 

ere 1 ]-'. 
Po / i  \ P /meask E; ~ J 

Let us transform this expression by expanding the quantities entering into it. According to (11), the thermal emf  
due to the Peltier effect  may be written as E te  = ] 0. 2 T m lp/)~ (1 -~ y'). 

The ohmic voltage drop is E~ ~ = ]p0lp. Further, in a weak magnetic  field, the longitudinal Nemst-Ettingshausen 
emf  and the relative change in resistance are given [7] by 

EZN.E = C(r, p":') " -7-  A T , ,  

Ap/p ----- D(r, ~*) (u Hi&.  

Substituting the values of Ete, Epo, ENZ_E and EZ~ o into (15), we  obtain a final expression for the change in relative 
resistance in a magnet ic  field: 

( A9 } ----( A f ) m  [ l q -  , , J - - ~ ~ 2 4 7  C(r,~*) te Jo ] - 2  

Po / i  eas 1-t-y J D(r__~*) e= (1 + y ' )  " (16) 

Thus, in determining the latter it is necessary to take into account the fact that the measured value (Ap/P0)mea s 
differs from the tree value by a certain quantity in the square brackets. This correction depends on the nature of the 
specimen and the experimental  conditions, and becomes appreciable in measuring Ap/po for thermoelectr ic  materials .  

We note that the Nernst and Maggi-Righi-Leduc effects, which have not been considered, may  make the correc- 
tion even greater. 

Transverse Nemst-Ettingshausen effect.  When a specimen with a temperature drop is placed in a magnet ic  field, 
two transverse thermomagnet ic  effects are observed: the Nemst-Ettingshausen effect  (an emf  EN_ E in a direction per-  
pendicular to the temperature gradient and the magnet ic  field) and the Righi-Leduc effect (a temperature drop ATy in 
the same direction producing a thermal emf  ER_ L that is added to EN_E). Thus the total emf  in the y direction is 

(EN.E)mea  s = (EN.E)  i @ E R .  L . (17) 

The Righi-Leduc emf  is given [7] by the expression 

E R .  L = G(r, ~*)~a Rx Hb 
X e dT 
)~ dx 

The coefficients G(r, g*) for nondegenerate and degenerate semiconductors, respectively,  are 

G n d ( r , ~ * ) =  (r J - l / 2 )  2 + 3 / 2  , Gd ( r , p * ) =  1. 
(r -W 2) 

Or, finally, taking into account heat  transfer from the specimen surface as well, we have 

(18) 

I G(r,p.*) ~e Xe ] 
(EN-E)meas=(EN_E) i 1 @ ~-~,~-~ ~ ~- (1 E) . (19) 
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This formula may be transformed by replacing the electronic component of thermal conductivity with values based 

on the Wiedemann-Franz law Xen d == (r + 2) cr T and Led == ~ ~ T .  

Then, allowing for heat transfer, we have for the nondegenerate semiconductor 

F 
(gN=E) meas (EN=E) i ~ 1 + 

and for the degenerate case 

( r +  1/2) ~ 4 3 / 2  k Jo(1 --%) l 
(r -- I/2) e J 

(20) 

(EN.E)meas = (EN.E) i 1 + - - f f - . (2r__ 1---~) ~ Jo(l - -  ~) . (21) 

We note that earlier, in evaluating the error in measuring the Hall emf, we neglected the influence of the Righi- 
Leduc effect, which may be created by the Peltier effect at the ends of the specimen. Taking this into account, and 
using (19), we can transform (19) to 

(Ec f )meas=(Ex) i{1  + B ( r , F * )  k Jo I 1 
e= 1 + ~  

1 ] Xe(1--~) jo} ' 
+ l+y '  +a(r,l~*) k(l+v')  (22) 

The analysis thus allows one to estimate the influence of the nonisothermicity of the specimen and of heat transfer 
from its surfaces to the surrounding medium on the accuracy of determination of the basic galvanomagnetic and thermo- 
magnetic phenomena. It follows from (16), (20), (21), and (22) that these factors become especially important in testing 
materials with thermoelectric properties. 

NOTATION 

l, b, d - linear dimensions of specimen; I, j, N, and T - current, current density, magnetic field intensity, and 
absolute temperature; a ,  k, o, and R x - thermal emf, thermal conductivity, electric conductivity, and Hall constant 
of test material; n, u, and c - carrier concentration and mobility and speed of light; B(r, ~*) - coefficient deter- 
mined by the scattering mechanism and degree of degeneracy of the electron gas; k, r, /1" - Boltzmann constant, expo- 
nent in the relation between the electron mean free path and energy, and reduced Chemical potential level; F(/I*) -- 
Fermi integral; Jo = a~d T/X - l o f f e  number characterizing the energy potentiaI of thermoeIectric materials; T '  = T(y)- 
To, where To is the ambient temperature; a, w e -coef f ic ien t  of heat transfer from specimen surface and Ettingshausen 
heat emitted or absorbed at the specimen faces perpendicular to the y axis; Xn, Pn, Sn - t h e r m a l  conductivity, perimeter 
and cross-sectional area of Hall probes and thermocouple leads; G(r, g*), D(r, g*) ~ coefficients depending on the carrier 
scattering mechanism and the position of the chemical potentia ! level. 
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